kristofer revised this gist . Go to revision
1 file changed, 113 insertions
NQueenProblem.java(file created)
@@ -0,0 +1,113 @@ | |||
1 | + | // Java program to solve N Queen Problem using backtracking | |
2 | + | ||
3 | + | public class NQueenProblem { | |
4 | + | final int N = 4; | |
5 | + | ||
6 | + | // A utility function to print solution | |
7 | + | void printSolution(int board[][]) | |
8 | + | { | |
9 | + | for (int i = 0; i < N; i++) { | |
10 | + | for (int j = 0; j < N; j++) { | |
11 | + | if (board[i][j] == 1) | |
12 | + | System.out.print("Q "); | |
13 | + | else | |
14 | + | System.out.print(". "); | |
15 | + | } | |
16 | + | System.out.println(); | |
17 | + | } | |
18 | + | } | |
19 | + | ||
20 | + | // A utility function to check if a queen can | |
21 | + | // be placed on board[row][col]. Note that this | |
22 | + | // function is called when "col" queens are already | |
23 | + | // placeed in columns from 0 to col -1. So we need | |
24 | + | // to check only left side for attacking queens | |
25 | + | boolean isSafe(int board[][], int row, int col) | |
26 | + | { | |
27 | + | int i, j; | |
28 | + | ||
29 | + | // Check this row on left side | |
30 | + | for (i = 0; i < col; i++) | |
31 | + | if (board[row][i] == 1) | |
32 | + | return false; | |
33 | + | ||
34 | + | // Check upper diagonal on left side | |
35 | + | for (i = row, j = col; i >= 0 && j >= 0; i--, j--) | |
36 | + | if (board[i][j] == 1) | |
37 | + | return false; | |
38 | + | ||
39 | + | // Check lower diagonal on left side | |
40 | + | for (i = row, j = col; j >= 0 && i < N; i++, j--) | |
41 | + | if (board[i][j] == 1) | |
42 | + | return false; | |
43 | + | ||
44 | + | return true; | |
45 | + | } | |
46 | + | ||
47 | + | // A recursive utility function to solve N | |
48 | + | // Queen problem | |
49 | + | boolean solveNQUtil(int board[][], int col) | |
50 | + | { | |
51 | + | // Base case: If all queens are placed | |
52 | + | // then return true | |
53 | + | if (col >= N) | |
54 | + | return true; | |
55 | + | ||
56 | + | // Consider this column and try placing | |
57 | + | // this queen in all rows one by one | |
58 | + | for (int i = 0; i < N; i++) { | |
59 | + | ||
60 | + | // Check if the queen can be placed on | |
61 | + | // board[i][col] | |
62 | + | if (isSafe(board, i, col)) { | |
63 | + | ||
64 | + | // Place this queen in board[i][col] | |
65 | + | board[i][col] = 1; | |
66 | + | ||
67 | + | // Recur to place rest of the queens | |
68 | + | if (solveNQUtil(board, col + 1) == true) | |
69 | + | return true; | |
70 | + | ||
71 | + | // If placing queen in board[i][col] | |
72 | + | // doesn't lead to a solution then | |
73 | + | // remove queen from board[i][col] | |
74 | + | board[i][col] = 0; // BACKTRACK | |
75 | + | } | |
76 | + | } | |
77 | + | ||
78 | + | // If the queen can not be placed in any row in | |
79 | + | // this column col, then return false | |
80 | + | return false; | |
81 | + | } | |
82 | + | ||
83 | + | // This function solves the N Queen problem using | |
84 | + | // Backtracking. It mainly uses solveNQUtil () to | |
85 | + | // solve the problem. It returns false if queens | |
86 | + | // cannot be placed, otherwise, return true and | |
87 | + | // prints placement of queens in the form of 1s. | |
88 | + | // Please note that there may be more than one | |
89 | + | // solutions, this function prints one of the | |
90 | + | // feasible solutions. | |
91 | + | boolean solveNQ() | |
92 | + | { | |
93 | + | int board[][] = { { 0, 0, 0, 0 }, | |
94 | + | { 0, 0, 0, 0 }, | |
95 | + | { 0, 0, 0, 0 }, | |
96 | + | { 0, 0, 0, 0 } }; | |
97 | + | ||
98 | + | if (solveNQUtil(board, 0) == false) { | |
99 | + | System.out.print("Solution does not exist"); | |
100 | + | return false; | |
101 | + | } | |
102 | + | ||
103 | + | printSolution(board); | |
104 | + | return true; | |
105 | + | } | |
106 | + | ||
107 | + | // Driver program to test above function | |
108 | + | public static void main(String args[]) | |
109 | + | { | |
110 | + | NQueenProblem Queen = new NQueenProblem(); | |
111 | + | Queen.solveNQ(); | |
112 | + | } | |
113 | + | } |
Newer
Older