NQueenProblem.java
· 2.7 KiB · Java
Исходник
// Java program to solve N Queen Problem using backtracking
public class NQueenProblem {
final int N = 4;
// A utility function to print solution
void printSolution(int board[][])
{
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (board[i][j] == 1)
System.out.print("Q ");
else
System.out.print(". ");
}
System.out.println();
}
}
// A utility function to check if a queen can
// be placed on board[row][col]. Note that this
// function is called when "col" queens are already
// placeed in columns from 0 to col -1. So we need
// to check only left side for attacking queens
boolean isSafe(int board[][], int row, int col)
{
int i, j;
// Check this row on left side
for (i = 0; i < col; i++)
if (board[row][i] == 1)
return false;
// Check upper diagonal on left side
for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
if (board[i][j] == 1)
return false;
// Check lower diagonal on left side
for (i = row, j = col; j >= 0 && i < N; i++, j--)
if (board[i][j] == 1)
return false;
return true;
}
// A recursive utility function to solve N
// Queen problem
boolean solveNQUtil(int board[][], int col)
{
// Base case: If all queens are placed
// then return true
if (col >= N)
return true;
// Consider this column and try placing
// this queen in all rows one by one
for (int i = 0; i < N; i++) {
// Check if the queen can be placed on
// board[i][col]
if (isSafe(board, i, col)) {
// Place this queen in board[i][col]
board[i][col] = 1;
// Recur to place rest of the queens
if (solveNQUtil(board, col + 1) == true)
return true;
// If placing queen in board[i][col]
// doesn't lead to a solution then
// remove queen from board[i][col]
board[i][col] = 0; // BACKTRACK
}
}
// If the queen can not be placed in any row in
// this column col, then return false
return false;
}
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil () to
// solve the problem. It returns false if queens
// cannot be placed, otherwise, return true and
// prints placement of queens in the form of 1s.
// Please note that there may be more than one
// solutions, this function prints one of the
// feasible solutions.
boolean solveNQ()
{
int board[][] = { { 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 } };
if (solveNQUtil(board, 0) == false) {
System.out.print("Solution does not exist");
return false;
}
printSolution(board);
return true;
}
// Driver program to test above function
public static void main(String args[])
{
NQueenProblem Queen = new NQueenProblem();
Queen.solveNQ();
}
}
| 1 | // Java program to solve N Queen Problem using backtracking |
| 2 | |
| 3 | public class NQueenProblem { |
| 4 | final int N = 4; |
| 5 | |
| 6 | // A utility function to print solution |
| 7 | void printSolution(int board[][]) |
| 8 | { |
| 9 | for (int i = 0; i < N; i++) { |
| 10 | for (int j = 0; j < N; j++) { |
| 11 | if (board[i][j] == 1) |
| 12 | System.out.print("Q "); |
| 13 | else |
| 14 | System.out.print(". "); |
| 15 | } |
| 16 | System.out.println(); |
| 17 | } |
| 18 | } |
| 19 | |
| 20 | // A utility function to check if a queen can |
| 21 | // be placed on board[row][col]. Note that this |
| 22 | // function is called when "col" queens are already |
| 23 | // placeed in columns from 0 to col -1. So we need |
| 24 | // to check only left side for attacking queens |
| 25 | boolean isSafe(int board[][], int row, int col) |
| 26 | { |
| 27 | int i, j; |
| 28 | |
| 29 | // Check this row on left side |
| 30 | for (i = 0; i < col; i++) |
| 31 | if (board[row][i] == 1) |
| 32 | return false; |
| 33 | |
| 34 | // Check upper diagonal on left side |
| 35 | for (i = row, j = col; i >= 0 && j >= 0; i--, j--) |
| 36 | if (board[i][j] == 1) |
| 37 | return false; |
| 38 | |
| 39 | // Check lower diagonal on left side |
| 40 | for (i = row, j = col; j >= 0 && i < N; i++, j--) |
| 41 | if (board[i][j] == 1) |
| 42 | return false; |
| 43 | |
| 44 | return true; |
| 45 | } |
| 46 | |
| 47 | // A recursive utility function to solve N |
| 48 | // Queen problem |
| 49 | boolean solveNQUtil(int board[][], int col) |
| 50 | { |
| 51 | // Base case: If all queens are placed |
| 52 | // then return true |
| 53 | if (col >= N) |
| 54 | return true; |
| 55 | |
| 56 | // Consider this column and try placing |
| 57 | // this queen in all rows one by one |
| 58 | for (int i = 0; i < N; i++) { |
| 59 | |
| 60 | // Check if the queen can be placed on |
| 61 | // board[i][col] |
| 62 | if (isSafe(board, i, col)) { |
| 63 | |
| 64 | // Place this queen in board[i][col] |
| 65 | board[i][col] = 1; |
| 66 | |
| 67 | // Recur to place rest of the queens |
| 68 | if (solveNQUtil(board, col + 1) == true) |
| 69 | return true; |
| 70 | |
| 71 | // If placing queen in board[i][col] |
| 72 | // doesn't lead to a solution then |
| 73 | // remove queen from board[i][col] |
| 74 | board[i][col] = 0; // BACKTRACK |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | // If the queen can not be placed in any row in |
| 79 | // this column col, then return false |
| 80 | return false; |
| 81 | } |
| 82 | |
| 83 | // This function solves the N Queen problem using |
| 84 | // Backtracking. It mainly uses solveNQUtil () to |
| 85 | // solve the problem. It returns false if queens |
| 86 | // cannot be placed, otherwise, return true and |
| 87 | // prints placement of queens in the form of 1s. |
| 88 | // Please note that there may be more than one |
| 89 | // solutions, this function prints one of the |
| 90 | // feasible solutions. |
| 91 | boolean solveNQ() |
| 92 | { |
| 93 | int board[][] = { { 0, 0, 0, 0 }, |
| 94 | { 0, 0, 0, 0 }, |
| 95 | { 0, 0, 0, 0 }, |
| 96 | { 0, 0, 0, 0 } }; |
| 97 | |
| 98 | if (solveNQUtil(board, 0) == false) { |
| 99 | System.out.print("Solution does not exist"); |
| 100 | return false; |
| 101 | } |
| 102 | |
| 103 | printSolution(board); |
| 104 | return true; |
| 105 | } |
| 106 | |
| 107 | // Driver program to test above function |
| 108 | public static void main(String args[]) |
| 109 | { |
| 110 | NQueenProblem Queen = new NQueenProblem(); |
| 111 | Queen.solveNQ(); |
| 112 | } |
| 113 | } |