NQueenProblem.java
· 2.7 KiB · Java
原始檔案
// Java program to solve N Queen Problem using backtracking
public class NQueenProblem {
final int N = 4;
// A utility function to print solution
void printSolution(int board[][])
{
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (board[i][j] == 1)
System.out.print("Q ");
else
System.out.print(". ");
}
System.out.println();
}
}
// A utility function to check if a queen can
// be placed on board[row][col]. Note that this
// function is called when "col" queens are already
// placeed in columns from 0 to col -1. So we need
// to check only left side for attacking queens
boolean isSafe(int board[][], int row, int col)
{
int i, j;
// Check this row on left side
for (i = 0; i < col; i++)
if (board[row][i] == 1)
return false;
// Check upper diagonal on left side
for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
if (board[i][j] == 1)
return false;
// Check lower diagonal on left side
for (i = row, j = col; j >= 0 && i < N; i++, j--)
if (board[i][j] == 1)
return false;
return true;
}
// A recursive utility function to solve N
// Queen problem
boolean solveNQUtil(int board[][], int col)
{
// Base case: If all queens are placed
// then return true
if (col >= N)
return true;
// Consider this column and try placing
// this queen in all rows one by one
for (int i = 0; i < N; i++) {
// Check if the queen can be placed on
// board[i][col]
if (isSafe(board, i, col)) {
// Place this queen in board[i][col]
board[i][col] = 1;
// Recur to place rest of the queens
if (solveNQUtil(board, col + 1) == true)
return true;
// If placing queen in board[i][col]
// doesn't lead to a solution then
// remove queen from board[i][col]
board[i][col] = 0; // BACKTRACK
}
}
// If the queen can not be placed in any row in
// this column col, then return false
return false;
}
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil () to
// solve the problem. It returns false if queens
// cannot be placed, otherwise, return true and
// prints placement of queens in the form of 1s.
// Please note that there may be more than one
// solutions, this function prints one of the
// feasible solutions.
boolean solveNQ()
{
int board[][] = { { 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 } };
if (solveNQUtil(board, 0) == false) {
System.out.print("Solution does not exist");
return false;
}
printSolution(board);
return true;
}
// Driver program to test above function
public static void main(String args[])
{
NQueenProblem Queen = new NQueenProblem();
Queen.solveNQ();
}
}
1 | // Java program to solve N Queen Problem using backtracking |
2 | |
3 | public class NQueenProblem { |
4 | final int N = 4; |
5 | |
6 | // A utility function to print solution |
7 | void printSolution(int board[][]) |
8 | { |
9 | for (int i = 0; i < N; i++) { |
10 | for (int j = 0; j < N; j++) { |
11 | if (board[i][j] == 1) |
12 | System.out.print("Q "); |
13 | else |
14 | System.out.print(". "); |
15 | } |
16 | System.out.println(); |
17 | } |
18 | } |
19 | |
20 | // A utility function to check if a queen can |
21 | // be placed on board[row][col]. Note that this |
22 | // function is called when "col" queens are already |
23 | // placeed in columns from 0 to col -1. So we need |
24 | // to check only left side for attacking queens |
25 | boolean isSafe(int board[][], int row, int col) |
26 | { |
27 | int i, j; |
28 | |
29 | // Check this row on left side |
30 | for (i = 0; i < col; i++) |
31 | if (board[row][i] == 1) |
32 | return false; |
33 | |
34 | // Check upper diagonal on left side |
35 | for (i = row, j = col; i >= 0 && j >= 0; i--, j--) |
36 | if (board[i][j] == 1) |
37 | return false; |
38 | |
39 | // Check lower diagonal on left side |
40 | for (i = row, j = col; j >= 0 && i < N; i++, j--) |
41 | if (board[i][j] == 1) |
42 | return false; |
43 | |
44 | return true; |
45 | } |
46 | |
47 | // A recursive utility function to solve N |
48 | // Queen problem |
49 | boolean solveNQUtil(int board[][], int col) |
50 | { |
51 | // Base case: If all queens are placed |
52 | // then return true |
53 | if (col >= N) |
54 | return true; |
55 | |
56 | // Consider this column and try placing |
57 | // this queen in all rows one by one |
58 | for (int i = 0; i < N; i++) { |
59 | |
60 | // Check if the queen can be placed on |
61 | // board[i][col] |
62 | if (isSafe(board, i, col)) { |
63 | |
64 | // Place this queen in board[i][col] |
65 | board[i][col] = 1; |
66 | |
67 | // Recur to place rest of the queens |
68 | if (solveNQUtil(board, col + 1) == true) |
69 | return true; |
70 | |
71 | // If placing queen in board[i][col] |
72 | // doesn't lead to a solution then |
73 | // remove queen from board[i][col] |
74 | board[i][col] = 0; // BACKTRACK |
75 | } |
76 | } |
77 | |
78 | // If the queen can not be placed in any row in |
79 | // this column col, then return false |
80 | return false; |
81 | } |
82 | |
83 | // This function solves the N Queen problem using |
84 | // Backtracking. It mainly uses solveNQUtil () to |
85 | // solve the problem. It returns false if queens |
86 | // cannot be placed, otherwise, return true and |
87 | // prints placement of queens in the form of 1s. |
88 | // Please note that there may be more than one |
89 | // solutions, this function prints one of the |
90 | // feasible solutions. |
91 | boolean solveNQ() |
92 | { |
93 | int board[][] = { { 0, 0, 0, 0 }, |
94 | { 0, 0, 0, 0 }, |
95 | { 0, 0, 0, 0 }, |
96 | { 0, 0, 0, 0 } }; |
97 | |
98 | if (solveNQUtil(board, 0) == false) { |
99 | System.out.print("Solution does not exist"); |
100 | return false; |
101 | } |
102 | |
103 | printSolution(board); |
104 | return true; |
105 | } |
106 | |
107 | // Driver program to test above function |
108 | public static void main(String args[]) |
109 | { |
110 | NQueenProblem Queen = new NQueenProblem(); |
111 | Queen.solveNQ(); |
112 | } |
113 | } |